Riemann–Liouville Operator in Weighted Lp Spaces via the Jacobi Series Expansion
نویسندگان
چکیده
منابع مشابه
Korovkin-Type Theorems in Weighted Lp-Spaces via Summation Process
Korovkin-type theorem which is one of the fundamental methods in approximation theory to describe uniform convergence of any sequence of positive linear operators is discussed on weighted Lp spaces, 1 ≤ p < ∞ for univariate and multivariate functions, respectively. Furthermore, we obtain these types of approximation theorems by means of A-summability which is a stronger convergence method than ...
متن کاملNoncommutative Lp spaces, Operator spaces and Applications
Overview of the field. NoncommutativeLp-spaces are at the heart of this conference. These spaces have a long history going back to pioneering works by von Neumann, Dixmier and Segal. They are the analogues of the classical Lebesgue spaces of pintegrable functions, where now functions are replaced by operators. These spaces have been investigated for operator algebras with a trace, and then arou...
متن کاملJacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces
Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces are investigated. Some results on orthogonal projections and interpolations are established. Explicit expressions describing the dependence of approximation results on the parameters of Jacobi polynomials are given. These results serve as an important tool in the analysis of numerous quadratures and numerical methods for diff...
متن کاملComplex interpolation of weighted noncommutative Lp-spaces
Let M be a semifinite von Neumann algebra equipped with a semifinite normal faithful trace τ . Let d be an injective positive measurable operator with respect to (M, τ ) such that d is also measurable. Define Lp(d) = {x ∈ L0(M) : dx+ xd ∈ Lp(M)} and ‖x‖Lp(d) = ‖dx+ xd‖p . We show that for 1 6 p0 < p1 6 ∞, 0 < θ < 1 and α0 > 0, α1 > 0 the interpolation equality (Lp0(d 0), Lp1(d α))θ = Lp(d ) hol...
متن کاملLp REGULARITY FOR CONVOLUTION OPERATOR EQUATIONS IN BANACH SPACES
Abstract. Here we utilize operator–valued Lq → Lp Fourier multiplier theorems to establish lower bound estimates for large class of elliptic integrodifferential equations in R. Moreover, we investigate separability properties of parabolic convolution operator equations that arise in heat conduction problems in materials with fading memory. Finally, we give some remarks on optimal regularity of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2019
ISSN: 2075-1680
DOI: 10.3390/axioms8020075